Blog

Machine Learning

Introduction To Neural Networks

Introduction To Neural Networks

Artificial Neural Networks are all the rage. One has to wonder if the catchy name played a role in the model’s own marketing and adoption. I’ve seen business managers giddy to mention that their products use “Artificial Neural Networks” and “Deep Learning”. Would they...

Gradient Boosting Explained

If linear regression was a Toyota Camry, then gradient boosting would be a UH-60 Blackhawk Helicopter. A particular implementation of gradient boosting, XGBoost, is consistently used to win machine learning competitions on Kaggle. Unfortunately many practitioners...

Random Forest From Top To Bottom

In three months (as of June 2016) the New Orleans Saints will play a football game against the Atlanta Falcons. I want to know who will win. I ask my friend and he says the Saints. Technically this is a predictive model, but it’s probably not worth much. I can improve...

Logistic Regression Fundamentals

Logistic regression is a generalized linear model most commonly used for classifying binary data.  It’s output is a continuous range of values between 0 and 1 (commonly representing the probability of some event occurring), and its input can be a multitude...